我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|本期目录/Table of Contents|

潜在的神经侵袭特性可能是新型冠状病毒肺炎患者呼吸窘迫的原因之一(PDF)

《医学争鸣》[ISSN:1000-2790/CN:61-1060/R]

期数:
2020年01期
页码:
7-10
栏目:
新冠肺炎防控
出版日期:
2020-02-29

文章信息/Info

Title:
Potential neuroinvasion may be one cause of respiratory distress in COVID-19 patients
作者:
李艳超1白万柱2端川勉3
(1吉林大学白求恩医学部基础医学院人体组织学与胚胎学系,吉林 长春 130021; 2 中国中医科学院针灸研究所,北京 100700;3日本独立行政法人理化学研究所,日本 琦玉 351-0198)
Author(s):
LI Yanchao1 BAI Wanzhu2 Tsutomu Hashikawa3
1Department of Histology and Embryology, Norman Bethune College of Medicine, Jilin University, Changchun 130021, China; 2Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Science, Beijing 100700, China; 3Advanced Technology Development Group, RIKEN Brain Science Institute, Saitama 351-0198, Japan
关键词:
新型冠状病毒 神经元侵袭性 呼吸窘迫综合征
Keywords:
SARS-CoV-2 neuroinvasion respiratory distress syndrome
分类号:
R563.1
DOI:
10.13276/j.issn.1674-8913.2020.01.002
文献标识码:
A
摘要:
继SARS冠状病毒(SARS-CoV)和中东呼吸综合征冠状病毒(MERS-CoV)之后,另一 种高致病性冠状病毒SARS-CoV-2自2019年12月开始在中国引起流行性重症肺炎(COVID-19),并且 造成世界性恐慌。此次SARS-CoV-2与SARS-CoV具有高度同源序列和相似的发病机制,并且能够利用 SARS-CoV细胞受体侵入宿主。SARS-CoV受体除了存在于呼吸道黏膜和肺泡上皮之外,还广泛存在 于神经元的细胞膜上,因此SARS-CoV-2很可能具有潜在的神经侵袭特性。临床资料表明,COVID-19 患者最典型的症状是呼吸窘迫,需要重症监护的患者大多数不能自主呼吸。除此之外,COVID-19患 者还出现头痛、恶心和呕吐等神经症状。现有研究数据表明,神经侵袭特性是β冠状病毒的一个共 同特性,而且动物实验已经表明冠状病毒能够通过呼吸道和肺内的化学和机械感受器侵入周围神经 并到达脑干,进而破坏与呼吸有关的感觉和运动神经元。因此我们推测SARS-CoV-2 的神经侵袭特性 很可能是重症患者出现呼吸窘迫的原因之一。认识SARS-CoV-2潜在的神经侵袭特性对于预防和治疗 COVID-19引起的呼吸窘迫具有重要的指导意义。
Abstract:
Following the severe acute respiratory syndrome corona virus (SARS-CoV) and Middle East respiratory syndrome corona virus (MERS-CoV), another highly pathogenic corona virus called SARSCoV- 2 (previously known as 2019-nCoV) has caused pandemic pneumonia named COVID-19 in China and has been putting the whole world on alert since December 2019. SARS-CoV-2 shares highly homological sequence and similar pathogenesis with SARS-CoV, and makes use of the same receptor as SARS-CoV for its invasion. The receptor of SARS-CoV is distributed widely on the cell membrane of neurons as well as on the mucous membrane of the respiratory tract and alveolar epithelial cells. Therefore, SARS-CoV-2 may also have similar neuroinvasion ability. Based on the public data, the most distinctive symptom of COVID-19 patients is respiratory distress, and most patients admitted to the intensive care could not breathe spontaneously. In addition, some COVID-19 patients did show neurologic signs such as headache, nausea and vomiting. It is quite likely that its potential neuroinvasion is one cause leading to the SARS-CoV-2-induced respiratory failure. Importantly, some corona viruses have been shown able to spread to the brain stem via the respiratory mechano- and chemoreceptors in the lung and lower respiratory airways, and subsequently destroy the central neurons in charge of respiratory sensation and movement in experimental animals. It is presumed that the neuroinvasion ability of SARS-CoV-2 may be the one cause of respiratory distress developing in severe COVID-19 patients. It is important to be aware of the potential neuroinvasion of SARS-CoV-2 for the prevention and treatment of the COVID-19-related respiratory distress.

参考文献/References

[1] Glass WG, Subbarao K, Murphy B, et al. Mechanisms of host defense following severe acute respiratory syndromecoronavirus (SARS-CoV) pulmonary infection of mice[J]. J Immunol, 2004, 173(6):4030-4039.
[2] Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China[J]. Lancet, 2020, 395(10223):497-506.
[3] Yu F, Du L, Ojcius DM, et al. Measures for diagnosing and treating infections by a novel coronavirus responsible for a pneumonia outbreak originating in Wuhan, China[J]. Microbes Infect, 2020, In Press. PII:S1286-4579(20)30025-3. DOI:10.1016/j.micinf.2020.01.003.
[4] Song Z, Xu Y, Bao L, et al. From SARS to MERS, thrusting coronaviruses into the spotlight[J]. Viruses, 2019, 11(1):59.
[5] Lu R, Zhao X, Li J, et al. Genomic characterization and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding[J]. Lancet, 2020, In Press. PII:S0140-6736(20)30251-8. DOI:10.1016/S0140- 6736(20)30251-8.
[6] Wan Y, Shang J, Graham R, et al. Receptor recognition by novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS[J]. J Virol, 2020, In Press. PII:JVI.00127-20. DOI:10.1128/JVI.00127-20.
[7] Yuan Y, Cao D, Zhang Y, et al. Cryo-EM structures of MERSCoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains[J]. Nat Commun, 2017, 8:15092.
[8] Hulswit RJ, de Haan CA, Bosch BJ. Coronavirus spike protein and tropism changes[J]. Adv Virus Res, 2016, 96:29-57.
[9] Li YC, Bai WZ, Hirano N, et al. Coronavirus infection of rat dorsal root ganglia: ultrastructural characterization of viral replication, transfer, and the early response of satellite cells[J]. Virus Res, 2012, 163(2):628-635.
[10] Li YC, Bai WZ, Hirano N, et al. Neurotropic virus tracing suggests a membranous-coating-mediated mechanism for transsynaptic communication[J]. J Comp Neurol, 2013, 521(1):203-212.
[11] Li K, Wohlford-Lenane C, Perlman S, et al. Middle East respiratory syndrome coronavirus causes multiple organ damage and lethal disease in mice transgenic for human dipeptidyl peptidase 4[J]. J Infect Dis, 2016, 213(5):712-722.
[12] DubéM, Le Coupanec A, Wong AHM, et al. Axonal transport enables neuron-to-neuron propagation of human coronavirus OC43[J]. J Virol, 2018, 92(17): e00404- e00418.
[13] Khan S, Ali A, Siddique R, et al. Novel coronavirus is putting the whole world on alert[J]. J Hosp Infect, 2020, In Press. PII:S0195-6701(20)30043-8. DOI:10.1016/ j.jhin.2020.01.019.
[14] Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study[J]. Lancet, 2020, 395(10223):507-513.
[15] Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China[J]. JAMA, 2020, In Press. DOI:10.1001/jama.2020.1585.
[16] Talbot PJ, Ekandé S, Cashman NR, et al. Neurotropism of human coronavirus 229E[J]. Adv Exp Med Biol, 1993, 342:339-346.
[17] Zhou X, Huang F, Xu L, et al. Hepatitis E virus infects neurons and brains[J]. J Infect Dis, 2017, 215(8):1197-1206.
[18] Mengeling WL, Boothe AD, Ritchie AE, et al. Characteristics of a coronavirus (strain 67N) of pigs[J]. Am J Vet Res, 1972, 33(2):297-308.
[19] Andries K, Pensaert MB. Immunofluorescence studies on the pathogenesis of hemagglutinating encephalomyelitis virus infection in pigs after oronasal inoculation[J]. Am J Vet Res, 1980, 41(9):1372-1378.
[20] Gu J, Gong E, Zhang B, et al. Multiple organ infection and the pathogenesis of SARS[J]. J Exp Med, 2005, 202(3):415-424.
[21] Gu J, Korteweg C. Pathology and pathogenesis of severe acute respiratory syndrome[J]. Am J Pathol, 2007, 170(4):1136-1147.
[22] Guo Y, Korteweg C, McNutt MA, et al. Pathogenetic mechanisms of severe acute respiratory syndrome[J]. Virus Res, 2008, 133(1):4-12.
[23] Hofmann H, Pöhlmann S. Cellular entry of the SARS coronavirus[J]. Trends Microbiol, 2004, 12(10):466-472.
[24] González JM, Gomez-Puertas P, Cavanagh D, et al. A comparative sequence analysis to revise the current taxonomy of the family Coronaviridae[J]. Arch Virol, 2003, 148(11):2207-2235.
[25] Li F. Receptor recognition mechanisms of coronaviruses: a decade of structural studies[J]. J Virol, 2015, 89(4):1954-1964.
[26] Chasey D, Alexander DJ. Morphogenesis of avian infectious bronchitis virus in primary chick kidney cells[J]. Arch Virol, 1976, 52(1-2):101-111.
[27] Matsuda K, Park CH, Sunden Y, et al. The vagus nerve is one route of transneural invasion for intranasally inoculated influenza a virus in mice[J]. Vet Pathol, 2004, 41(2):101-107.
[28] Kalia M, Mesulam MM. Brain stem projections of sensory and motor components of the vagus complex in the cat: II. Laryngeal, tracheobronchial, pulmonary, cardiac, and gastrointestinal branches[J]. J Comp Neurol, 1980, 193(2):467-508.
[29] Hadziefendic S, Haxhiu MA. CNS innervation of vagal preganglionic neurons controlling peripheral airways: a transneuronal labeling study using pseudorabies virus[J]. J Auton Nerv Syst, 1999, 76(2-3):135-145.
[30] Raux H, Flamand A, Blondel D. Interaction of the rabies virus P protein with the LC8 dynein light chain[J]. J Virol, 2000, 74(21):10212-10216.
[31] Rothe C, Schunk M, Sothmann P, et al. Transmission of 2019-nCoV infection from an asymptomatic contact in Germany[J]. N Engl J Med, 2020, In Press. DOI:10.1056/ NEJMc2001468.

备注/Memo

备注/Memo:
基金项目:国家自然科学基金(81871014)
作者简介:李艳超。博士,教授。研究方向:神经疾病细胞骨架机制。Tel:13943025836,E-mail:liyanchao@jlu.edu.cn
更新日期/Last Update: 2020-03-09