|本期目录/Table of Contents|





Hypothesis of neuronal damage in nucleus tractus solitarius of central nervous system
郑 翔1毕文杰
( 1四川大学华西基础医学与法医学院基础医学专业实验室,四川 成都 610041;2成都医学院 人体解剖与组织胚胎学教研室,四川 成都 610500)
ZHENG Xiang1 BI Wenjie2
1Laboratory of Basic Medical Science, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China; 2Department of Human Anatomy, Histology and Embryology, Chengdu Medical College, Chengdu 610500, China
type 2 diabetes mellitus essential hypertension central nervous system chronic stress amygdala nucleus nucleus tractus solitarius
2型糖尿病和原发高血压是现代社会常见的慢性疾病,二者发病率逐渐升高,大多数患 者的治疗效果并不理想。文章首先总结了两种疾病的共同危险因素,提出以中枢神经系统孤束核神 经元损伤为单一原发环节的假说。在该假说的指导下,进一步阐述了脑在糖代谢和血压调控中的核 心作用,解释了2型糖尿病和原发高血压与各个致病危险因素的关系,为今后这两种常见病的预防和 治疗提供一种新思路。
Type 2 diabetes mellitus and essential hypertension are common chronic diseases in modern society. The incidences of these two diseases are gradually increasing, and the clinical treatment effect of most patients is not satisfactory. The article first summarizes the common risk factors of the two diseases, and proposes the hypothesis that the neuronal damage of the nucleus tractus solitarius in the central nervous system is a single primary link. Under the guidance of this hypothesis, the article further elaborates the central role of brain in glucose metabolism and blood pressure regulation, explains the relationship between the two diseases and their risk factors. The article shed a new light for the prevention and treatment of these two common diseases in the future.


[1] Holman N, Young B, Gadsby R. Current prevalence of type 1 and type 2 diabetes in adults and children in the UK[J]. Diabet Med, 2015, 32(9):1119-1120.
[2] Oparil S, Acelajado MC, Bakris GL, et al. Hypertension[J]. Nat Rev Dis Primers, 2018, 4(3):18014.
[3] Ferrannini E, Cushman WC. Diabetes and hypertension: the bad companions[J]. Lancet, 2012, 380(9841):601-610.
[4] Thauvin-Robinet C, Auclair M, Duplomb L, et al. PIK3R1 mutations cause syndromic insulin resistance with lipoatrophy[J]. Am J Hum Genet, 2013, 93(1):141-149.
[5] Ferris WF, van der Merwe L, Campbell SC, et al. Glucocorticoid administration and brief occlusion of the main pancreatic duct are likely to increase islet mass by a similar mechanism[J]. Pancreas, 2005, 31(2):132-137.
[6] HaeuslerRA, McGraw TE, Accili D. Biochemical and cellular properties of insulin receptor signaling[J]. Nat Rev Mol cell Biol, 2018, 19(1):31-44.
[7] Beehner JC, Bergman TJ. The next step for stress research in primates: to identify relationships between glucocorticoid secretion and fitness[J]. Horm Behav, 2017, 91(4):68-83.
[8] Grayson BE, Seeley RJ, Sandoval DA. Wired on sugar: the role of the CNS in the regulation of glucose homeostasis[J]. Nat Rev Neurosci, 2013, 14(1):24-37.
[9] Deem JD, Muta K, Scarlett JM, et al. How should we think about the role of the brain in glucose homeostasis and diabetes?[J]. Diabetes, 2017, 66(7):1758-1765.
[10] Crump C, Sundquist J, Winkleby MA, et al. Stress resilience and subsequent risk of type 2 diabetes in 1.5 million young men[J]. Diabetologia, 2016, 59(4):728-733.
[11] Hackett RA, Steptoe A. Type 2 diabetes mellitus and psychological stress—a modifiable risk factor [J]. Nat Rev Endocrinol, 2017, 13(9):547-560.
[12] Centers for Disease Control and Prevention. Prevalence of overweight and obesity among adults with diagnosed diabetes—United States, 1988-1994 and 1999-2002[J]. MMWR Morb Mortal Wkly Rep, 2004, 53(45):1066-1068.
[13] Haslam DW, James WP. Obesity[J]. Lancet, 2005, 366(9492):1197-1209.
[14] Droste SK, de Groote L, Atkinson HC, et al. Corticosterone levels in the brain show a distinct ultradian rhythm but a delayed response to forced swim stress[J]. Endocrinology, 2008,149(7):3244-3253.
[15] Barazzoni R, Zanetti M, GortanCappellari G, et al. Fatty acids acutely enhance insulin-induced oxidative stress and cause insulin resistance by increasing mitochondrial reactive oxygen species (ROS) generation and nuclear factor-kappaB inhibitor (IkappaB)-nuclear factor-kappaB (NFkappaB) activation in rat muscle, in the absence of mitochondrial dysfunction[J]. Diabetologia, 2012, 55(3):773-782.
[16] Martins RC, Tufik S. The reciprocal interaction between sleep and type 2 diabetes mellitus: facts and perspectives[J]. Braz J Med Biol Res, 2008, 41(3):180-187.
[17] Pathak R, Pathak A. Study of life style habits on risk of type 2 diabetes[J]. Int J Appl Basic Med Res, 2012, 2(2):92-96.
[18] Esefeld K, Halle M. Physical activity and sport in type 2 diabetes mellitus. Impact on prevention and therapy[J]. Diabetologe, 2015, 11(8):618-628.
[19] Luces FC, Lozano SA, Joyner M, et al. Exercise benefits in cardiovascular disease: beyond attenuation of traditional risk factors[J]. Nat Rev Cardiol, 2018, 15(12):731-743.
[20] Dallaporta M, Himmi T, Perrin J, et al. Solitary tract nucleus sensitivity to moderate changes in glucose level[J]. Neuroreport, 1999, 10(12):2657-2660.
[21] Renner E, Szabo-Meltzer KI, Puskas N, et al. Activation of neurons in the hypothalamic dorsomedial nucleus via hypothalamic projections of the nucleus of the solitary tract following refeeding of fasted rats[J]. Eur J Neurosci, 2010, 31(2):302-314.
[22] Zeltser LM. Feeding circuit development and early-life influences on future feeding behavior[J]. Nat Rev Neurosci, 2018, 19(5):302-316.
[23] Meier U, Gressner AM. Endocrine regulation of energy metabolism: review of pathobiochemical and clinical chemical aspects of leptin, ghrelin, adiponectin, and resistin[J]. Clin Chem, 2004, 50(9):1511-1525.
[24] Greenberg HE, Sica AL, Scharf SM, et al. Expression of c-fos in the rat brainstem after chronic intermittent hypoxia[J]. Brain Res, 1999, 816(2):638-645.
[25] Cutsforth-Gregory JK, Benarroch EE. Nucleus of the solitary tract, medullary reflexes, and clinical implications[J]. Neurology, 2017, 88(12):1187-1196.
[26] Rinaman L. Ascending projections from the caudal visceral nucleus of the solitary tract to brain regions involved in food intake and energy expenditure[J]. Brain Res, 2010, 1350(9):18-34.
[27] Rafati A, Anvari E, Noorafshan A. High fructose solution induces neuronal loss in the nucleus of the solitary tract of rats[J]. Folia Neuropathol, 2013, 51(3):214-221.
[28] Cavanaugh AR, Schwartz GJ, Blouet C. High-fat feeding impairs nutrient sensing and gut brain integration in the caudomedial nucleus of the solitary tract in mice[J]. PLoS One, 2015, 10(3):e0118888.
[29] D a y a s C V , B u l l e r K M , C ra n e JW, e t a l . S t r e sso r categorization: acute physical and psychological stressors elicit distinctive recruitment patterns in the amygdala and in medullary noradrenergic cell groups[J]. Eur J Neurosci, 2001, 14(7):1143-1152.
[30] Lamy CM, Sanno H, Labouebe G, et al. Hypoglycemiaactivated GLUT2 neurons of the nucleus tractussolitarius stimulate vagal activity and glucagon secretion[J]. Cell Metab, 2014, 19(3):527-538.
[31] Zheng X, Bi W, Yang G, et al. Hyperglycemia induced by chronic restraint stress in mice is associated with nucleus tractussolitarius injury and not just the direct effect of glucocorticoids[J]. Front Neurosci, 2018, 12(19):983:11-14.
[32] GalluzziL, Vitale I, Aaronson SA, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018[J]. Cell Death Differ, 2018, 25(3):486-541.
[33] Manev H, Favaron M, Guidotti A, et al. Delayed increase of Ca2+ influx elicited by glutamate: role in neuronal death[J]. Mol Pharmacol, 1989, 36(1):106-112.
[34] Roozendaal B, McEwen BS, Chattarji S. Stress, memory and the amygdala[J]. Nat Rev Neurosci, 2009, 10(6):423-433.
[35] Tata DA, Marciano VA, Anderson BJ. Synapse loss from chronically elevated glucocorticoids: relationship to neuropil volume and cell number in hippocampal area CA3[J]. J Comp Neurol, 2006, 498(3):363-374.
[36] PopoliM, Yan Z, McEwen BS, et al. The stressed synapse: the impact of stress and glucocorticoids on glutamate transmission[J]. Nat Rev Neurosci, 2012, 13(1):22-37.
[37] Chattarji S, Tomar A, Suvrathan A, et al. Neighborhood matters: divergent patterns of stress-induced plasticity across the brain[J]. Nat Neurosci, 2015, 18(10):1364-1375.
[38] Ghosh S, Laxmi TR, Chattarji S. Functional connectivity from the amygdala to the hippocampus grows stronger after stress[J]. J Neurosci, 2013, 33(17):7234-7244.
[39] Shihara M, Hori N, Hirooka Y, et al. Cholinergic systems in the nucleus of the solitary tract of rats[J]. Am J Physiol, 1999, 276(4):R1141-1148.
[40] Yoshida T, Sakane N, Umekawa T, et al. Effect of nicotine on sympathetic nervous system activity of mice subjected to immobilization stress[J]. Physiol Behav, 1994, 55(1):53-57.
[41] Herraiz T, Chaparro C. Human monoamine oxidase is inhibited by tobacco smoke: betacarboline alkaloids act as potent and reversible inhibitors[J]. Biochem Biophys Res Commun, 2005, 326(2):378-386.
[42] Khan NA, Hillman CH. The relation of childhood physical activity and aerobic fitness to brain function and cognition: a review[J]. Pediatr Exerc Sci, 2014, 26(2):138-146.
[43] Vaynman S, Gomez-Pinilla F. Revenge of the “sit”: how lifestyle impacts neuronal and cognitive health trough molecular systems that interface energy metabolism with neuronal plasticity[J]. J Neurosci Res, 2006, 84(4):699-715.
[44] Polonsky KS. The past 200 years in diabetes[J]. New Eng J Med, 2012, 367(14):1332-1340.
[45] Beamish AJ, Olbers T, Kelly AS, et al. Cardiovascular effects of bariatric surgery[J]. Nat Rev Cardiol, 2016, 13(12):730-743.
[46] Li M, Belmonte JCI. Looking to the future following 10 years of induced pluripotent stem cell technologies[J]. Nat Protocols, 2016, 11(9):1579-1585.


作者简介:郑 翔。博士,高级实验师。研究方向:神经损伤与疾病;生物显微技术。Tel:13551384927,E-mail:jasondf211@163.com
更新日期/Last Update: 2020-03-09